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Abstract

While numerous algorithms have been proposed for ob-

ject tracking with demonstrated success, it remains a chal-

lenging problem for a tracker to handle large change in

scale, motion, shape deformation with occlusion. One of

the main reasons is the lack of effective image representa-

tion to account for appearance variation. Most trackers use

high-level appearance structure or low-level cues for repre-

senting and matching target objects. In this paper, we pro-

pose a tracking method from the perspective of mid-level

vision with structural information captured in superpixels.

We present a discriminative appearance model based on su-

perpixels, thereby facilitating a tracker to distinguish the

target and the background with mid-level cues. The tracking

task is then formulated by computing a target-background

confidence map, and obtaining the best candidate by max-

imum a posterior estimate. Experimental results demon-

strate that our tracker is able to handle heavy occlusion and

recover from drifts. In conjunction with online update, the

proposed algorithm is shown to perform favorably against

existing methods for object tracking.

1. Introduction

The recent years have witnessed significant advances

in visual tracking with the development of efficient algo-

rithms and fruitful applications. Examples abound, rang-

ing from algorithms that resort to low-level visual cues to

high-level structural information with adaptive models to

account for appearance variation as a result of object mo-

tion [1, 3, 10, 8, 21, 11]. While low-level cues are effective

for feature tracking and scene analysis, they are less effec-

tive in the context of object tracking [23]. On the other

hand, numerous works have demonstrated that adaptive ap-

pearance models play a key role in achieving robust object

tracking [9, 4, 13, 1, 11, 20].

In [13], an incremental visual tracker (IVT) with adap-

tive appearance model that aims to account for appearance

variation of rigid or limited deformable motion is presented.

Although it has been shown to perform well when target ob-

jects undergo lighting and pose variation, this method is less
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Figure 1. Four common challenges encountered in tracking. The

results by our tracker, IVT [13], VTD [11], PROST [20], Frag-

Track [1] and PDAT [10] methods are represented by yellow, red,

white, green, cyan, and magenta rectangles. Existing trackers are

not able to effectively handle heavy occlusion, large variation of

pose and scale, and non-rigid deformation, while our tracker gives

more robust results.

effective in handling heavy occlusion or non-rigid distor-

tion as a result of the adopted holistic appearance model.

The ensemble tracker [2] formulates the task as a pixel-

based binary classification problem. Although this method

is able to differentiate between target and background, the

pixel-based representation is rather limited and thereby con-

strains its ability to handle heavy occlusion and clutter. The

Fragment-based tracker [1] aims to solve partial occlusion

with a representation based on histograms of local patches.

The tracking task is carried out by combing votes of match-

ing local patches using a template. Nevertheless, the tem-

plate is not updated and thereby it is not expected to handle

appearance change due to large variation in scale and shape

deformation.



In addition to account for appearance variation, recent

works have focused on reducing visual drifts. In [3], an

algorithm extends multiple instance learning to an online

setting for object tracking. Whereas it is able to reduce

visual drifts, this method is not able to handle large non-

rigid shape deformation. The PROST method [20] extends

the tracking-by-detection framework with multiple modules

for reducing drifts. Although this tracker is able to han-

dle certain drifts and shape deformation, it is not clear how

this method can be extended to handle targets undergoing

non-rigid motion or large pose variation. The visual track-

ing decomposition (VTD) approach effectively extends the

conventional particle filter framework with multiple motion

and observation models to account for appearance varia-

tion caused by change of pose, lighting and scale as well

as partial occlusion [11]. Nevertheless, as a result of the

adopted generative representation scheme, this tracker is

not equipped to distinguish target and background patches.

Consequently, background pixels within a rectangular tem-

plate are inevitably considered as parts of foreground ob-

ject, thereby introducing significant amount of noise in up-

dating the appearance model.

Mid-level visual cues have been effective representa-

tions with sufficient information of image structure and

great flexibility when compared with high-level appear-

ance models and low-level features. In particular, super-

pixels have been one of the most promising representations

with demonstrated success in image segmentation and ob-

ject recognition [18, 15, 22, 12, 17]. These methods are

able to segment images into numerous superpixels with ev-

ident boundary information of object parts from which ef-

fective representations can be constructed. In [19], a track-

ing method based on superpixel is proposed, which re-

gards tracking task as a figure/ground segmentation across

frames. However, as it processes every entire frame individ-

ually with Delaunay triangularization and CRF for region

matching, the computational complexity is rather high. Fur-

ther, it is not designed to handle complex scenes including

heavy occlusion and cluttered background as well as large

lighting change.

Similarly, a non-parametric method [14] also aims to

segment one single salient foreground object from back-

ground..

In this paper, we exploit effective and efficient mid-level

visual cues for object tracking with superpixels. During

the training stage, the segmented superpixels are grouped

for constructing a discriminative appearance model to dis-

tinguish foreground objects from cluttered backgrounds.

In the test phase, a confidence map at superpixel level is

computed using the appearance model to obtain the most

likely target location with maximum a posteriori (MAP) es-

timates. The appearance model is constantly updated to

account for variation caused by change in both the target

and the background. Experimental results on various se-

quences show that the proposed algorithm performs favor-

ably against existing state-of-the-art methods. In particular,

our algorithm is able to track objects undergoing large non-

rigid motion, rapid movement, large variation of pose and

scale, heavy occlusion and drifts.

2. Proposed Algorithm

We present details of the proposed image representation

scheme and tracking algorithm in this section.

2.1. Bayesian Tracking Formulation

Our algorithm is formulated within the Bayesian frame-

work in which the maximum a posterior estimate of the state

given the observations up to time t is computed by

p(Xt|Y1:t) = αp(Yt|Xt)
∫

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1
(1)

where Xt is the state at time t, Y1:t is all the observations

up to time t, and α is a normalization term. In this work,

the target state is defined as Xt = (Xc
t , X

s
t ), where Xc

t

represents the center location of the target and Xs
t denotes

its scale. As demonstrated by numerous works in the ob-

ject tracking literature, it is critical to construct an effective

observation model p(Yt|Xt) and an efficient motion model

p(Xt|Xt−1).
In our formulation, a robust discriminative appearance

model is constructed which, given an observation, com-

putes the likelihood of it belonging to the target or the back-

ground. Thus the observation estimate of a certain target

candidate Xt is proportional to its confidence:

p(Yt|Xt) ∝ Ĉ(Xt) (2)

where Ĉ(Xt) represents the confidence of an observation at

state Xt being the target. The state estimate of the target X̂t

at time t can be obtained by the MAP estimate over the N

samples at each time t. Let X
(l)
t denote the l-th sample of

the state Xt,

X̂t = arg
X

(l)
t

max p(X
(l)
t |Y1:t) ∀ l = 1, ..., N (3)

In the following, the superpixel-based discriminative ap-

pearance model for tracking is introduced in Section 2.2,

followed by construction of the confidence map based on

this model in Section 2.3. The observation and motion mod-

els are presented in Section 2.4, and then the update scheme.

2.2. Superpixel­based Discriminative Appearance
Model

To construct an appearance model for both the target and

the background, prior knowledge regarding the label of each



(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 2. Illustration of confidence map for state prediction. (a) a new frame at time t. (b) surrounding region of the target in the last frame,

i.e., at state X
(1)
t . (c) segmentation result of (b). (d) the computed confidence map of superpixels using Eq. 7 and Eq. 8. The superpixels

colored with red indicate strong likelihood of belonging to the target, and those colored with dark blue indicate strong likelihood of

belonging to background. (e) the confidence map of the entire frame. (f), (g) and (h), (i) show two target candidates with high and low

confidence, respectively.

pixel can be learned from a set of m training frames. That

is, for a certain pixel at location (i, j) in the t-th frame

pixel(t, i, j), we have:

yt(i, j) =

{

1 if pixel(t, i, j) ∈ target

−1 if pixel(t, i, j) ∈ background
(4)

where yt(i, j) denotes the label of pixel(t, i, j). Assume

that the target object can be represented by a set of superpix-

els without significantly destroying the boundaries between

target and background (i.e., only few superpixels contain al-

most equal amount of target pixels and background pixels),

prior knowledge regarding the target and the background

appearance can be modeled by

yt(r) =

{

1 if sp(t, r) ∈ target

−1 if sp(t, r) ∈ background
(5)

where sp(t, r) denotes the r-th superpixel in the t-th frame,

and yt(r) denotes its corresponding label.

However, such prior knowledge is not at our disposal in

most tracking scenarios, and one feasible way to achieve

this is to infer prior knowledge from a set of samples,

{Xt}
m
t=1 prior to the tracking process starts. We present a

method to extract similar information as Eq. 5 from a small

set of samples.

First, we segment the surrounding region1 of the target in

the t-th training frame into Nt superpixels. Each superpixel

sp(t, r) (t = 1, ...,m, r = 1, ..., Nt) is represented by a

feature vector fr
t . of . Next, we apply the mean shift clus-

tering algorithm [6] on the total feature pool F = {fr
t |t =

1, ...,m; r = 1, ..., Nt}, and obtain n different clusters. In

the feature space, each cluster clst(i) (i = 1, ..., n) is repre-

sented by its cluster center fc(i), its cluster radius rc(i) and

its own cluster members {fr
t |f

r
t ∈ clst(i)}.

Now that every clst(i) corresponds to its own image re-

gion S(i) in the training frames (image regions that super-

pixel members of clst(i) cover), we count two scores for

1The surrounding region is a square area centered at the location of

target Xc
t

, and its side length is equal to λs[S(Xt)]
1
2 , where S(Xt) rep-

resents the area size of target area Xt. The parameter λs is a stable param-

eter, which controls the size of this surrounding region, and is set to 1.5 in

all experiments.

each clst(i): S+(i) and S−(i). The former denotes size of

cluster area S(i) overlapping the target area at state Xt in

the corresponding training frames, and the latter denotes the

size of S(i) outside the target area. Intuitively, the greater

the ratio S+(i)/S−(i) is, the more likely superpixel mem-

bers of clst(i) appear in target area in training frames. Con-

sequentially, we give each cluster a target-background con-

fidence measure between 1 and -1 to indicate how probable

its superpixel members belong to the target or background:

Cc
i =

S+(i)− S−(i)

S+(i) + S−(i)
, ∀ i = 1, ..., n. (6)

Our superpixel-based discriminative appearance model is

constructed based on four factors: cluster confidences Cc
i ,

cluster centers fc(i), cluster radius rc(i) and cluster mem-

bers {fr
t |f

r
t ∈ clst(i)}, which are used for determining

the cluster for a certain superpixel. By applying the con-

fidence measures of each cluster to superpixels in the train-

ing frames, we are able to learn a similar prior knowledge

as Eq. 5 from a set of training images.

The merits of the proposed superpixel-based discrimina-

tive appearance model are shown by Figure 4 and Section 3:

Few background superpixels appearing in the target area (as

a result of drifts or occlusions), are likely to be clustered

into the same group with other background superpixels, and

thus have negligible effect to our algorithm during training

and update.

2.3. Confidence Map

When a new frame arrives, we first extract a surrounding

region2 of the target and segment it into Nt superpixels (See

Figure 2 (b) and (c)). To compute a confidence map for cur-

rent frame, we evaluate every superpixel and compute its

confidence measure. The confidence measure of a super-

pixel depends on two factors: the cluster it belongs to, and

the distance between this superpixel and the corresponding

cluster center in the feature space. The rationale for the first

criterion is that if a certain superpixel belongs to clst(i) in

the feature space, then the target-background confidence of

2A square area centered at Xc

t−1 with side length λs[S(Xt−1)]
1
2 .



warped image confidence map

Figure 3. Confidence map. Four target candidate regions corresponding to states X
(i)
t , i = 1, . . . , 4 are shown both in warped image and

the confidence map. These candidates’ confidence regions Mi, i = 1, . . . , 4 have the same canonical size (upper right) after normalization.

Based on Eq. 10, candidate X
(1)
t , X

(2)
t have similar positive confidence C1, C2, and X

(3)
t , X

(4)
t have similar negative confidence C3,

C4. However, candidate X
(2)
t covers less target area than X

(1)
t , and X

(4)
t covers more background area than X

(3)
t . Intuitively, target-

background confidence of X
(1)
t should be higher than X

(2)
t , while confidence of X

(4)
t should be lower than X

(3)
t . These two factors are

considered in computing confidence map as described in Section 2.4.

clst(i) indicates how likely it belongs to the target or back-

ground. The second term is a weighting term that takes the

distance metric into consideration. The farther the feature

of a superpixel fr
t lies from the corresponding cluster center

fc(i) in feature space, the less likely this superpixel belongs

to clst(i). The confidence measure of each superpixel is

computed as follows:

w(r, i) = exp(−λd ×
||fr

t
−fc(i)||2
rc(i)

)

∀ r = 1, ..., Nt, i = 1, ..., n
(7)

Cs
r = w(r, i)× Cc

i , ∀ r = 1, ..., Nt (8)

where w(r, i) denotes the weighting term based on the dis-

tance between fr
t (the feature of sp(t, r), the r-th superpixel

in the t-th frame) and fc(i) (the feature center of the clus-

ter that sp(t, r) belongs to). The parameter rc(i) denotes

the cluster radius of clst(i) in the feature space, and λd is a

normalization term (set to 2 in all experiments). By taking

these two terms into account, Cs
r is the confidence measure

for superpixel r at the t-th frame, sp(t, r).
We obtain a confidence map for each pixel on the entire

current frame as follows. We assign every pixel in the su-

perpixel sp(t, r) with superpixel confidence Cs
r , and every

pixel outside this surrounding region with -1. Figure 2 (a)-

(e) shows the steps how the confidence map is computed

with a new frame arriving at time t. This confidence map

is computed based on our appearance model described in

Section 2.2. In turn, the following steps for identifying the

likely locations of the target in object tracking are based on

this confidence map.

2.4. Observation and Motion Models

The motion (or dynamical) model is assumed to be Gaus-

sian distributed:

p(Xt|Xt−1) = N (Xt;Xt−1,Ψ) (9)

where Ψ is a diagonal covariance matrix whose elements

are the standard deviations for location and scale, i.e., σc

and σs. The values of σc and σs dictate how the proposed

algorithm accounts for motion and scale change (See details

in the supplemental material).

We then normalize all these candidate image regions into

canonical size maps {Ml}
N
l=1 (the size of the target corre-

sponding to Xt−1 is used as the canonical size). We denote

vl(i, j) the value at location (i, j) of the normalized confi-

dence map Ml of X
(l)
t , and then we accumulate the confi-

dence for the state X
(l)
t :

∑

(i,j)∈Ml

vl(i, j) (10)

However, this target-background confidence Cl does not

deal with scaling well. In order to make the tracker robust

to the scaling of the target, we weigh Cl with respect to the

size of each candidate as follows:

Ĉl = Cl × [S(X
(l)
t )/S(Xt−1)], ∀ l = 1, ..., N (11)

where S(Xt) represents the area size of target state Xt. For

the target candidates with positive confidence values (i.e.,

indicating they are likely to be targets), the ones with larger

area size should be weighted more. For the target candi-

dates with negative confidence values, the ones with larger

area size should be weighted less. This weighting scheme

ensures our observation model p(Yt|X
s
t ) adaptive to scale.

Figure 3 illustrates this weighting scheme. We then nor-

malize the final confidence of all targets {Ĉl}
N
l=1 within the

range of [0,1] for computing likelihood of X
(l)
t for our ob-

servation model:

p(Yt|X
(l)
t ) = Ĉl, ∀ l = 1, ..., N (12)

where Ĉl denotes the normalized confidence value for each

sample. With the observation model p(Yt|X
(l)
t ) and the mo-

tion model p(X
(l)
t |Xt−1), the MAP state estimate X̂t can be

computed with Eq. 3. Figure 2 (f)-(i) show two drawn sam-

ples and their corresponding confidence maps. As shown in
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Figure 4. Recovering from drifts. (a) a target object with visual drifts. (b) the surrounding region of the target is segmented into superpixels.

(c) clustering results of (b) in feature space and the target-background confidence of each cluster. (d) the confidence map in a new frame

computed with clustering results. (e) the MAP estimate of the target area (the tracker recovers from drifts). This illustration shows even if

our tracker experiences drifts during tracking (See (a)), our appearance model obtains sufficient information from surrounding background

area by update, and provides our tracker with a more discriminative power against drifts than holistic appearance models.

these examples, the confidence maps facilitate the process

of determining the most likely target location.

2.5. Online Update with Occlusion and Drifts

We apply superpixel segmentation to the surrounding re-

gion of the target (rather than the entire image) for effi-

cient and effective object tracking. A sliding window up-

date scheme is adopted, in which a sequence of H frames is

stored during tracking process. For every U frames, we put

a new frame into this sequence, and delete the oldest one.

That is, this process retains a record from the past H × U
frames. For each frame in this sequence, the estimated state

X̂t and the result of superpixel segmentation are saved. We

update the appearance model with the retained sequence ev-

ery W frames3, and this process is the same as the training

process described in Section 2.2.

With the proposed discriminative appearance model us-

ing mid-level cues, we present a simple but efficient method

to handle occlusion in object tracking. For a state X
(l)
t at

time t, its confidence Cl (from Eq. 10) is bounded within

a range: [−S(X
(l)
t ), S(X

(l)
t )]. The upper bound indicates

that all pixels in the image region corresponding to X
(l)
t are

assigned with highest confidence of belonging to the target,

and conversely the lower bound indicates all pixels belong-

ing to the background. We set a threshold θo to detect heavy

or full occlusions:

µC −max({Cl}
N
l=1)

S(X
(l)
t )× 2

> θo (13)

where µC is the average of confidence (from Eq. 10) of the

target estimates in the retained sequence of H frames. The

numerator of the left hand side of this formula reflects the

difference between the confidence Cl of the MAP estimate

of current frame, and the average confidence of target in

the retained sequence. The denominator is a normalizing

term to confine the left hand side to the range of [-1,1]. If

the confidence Cl of the MAP estimate of current frame is

3The length of information sequence H and the spacing interval U is

set 10 and 3 in our experiments. The update frequency W is set between 5

and 10.

Table 1. Proposed algorithm.

Initialization:

for t = 1 to m (e.g., m is set to 4 in all experiments)

1. Initialize parameters of our algorithm in the first frame.

2. Segment the surrounding region of Xt for training into Nt su-

perpixels, and extract their features {fr
t
}Nt

r=1.

end

Obtain a feature pool F = {fr
t
|t = 1, ...,m; r = 1, ..., Nt}. Apply

mean shift clustering and obtain the superpixel-based discriminative

appearance model by Eq. 6.

Tracking:

for t = m+ 1 to the end of the sequence

1. Segment a surrounding region of Xt−1 into Nt superpixels and

extract their features. Compute the target-background confi-

dence map using Eq. 7 and Eq. 8.

2. Sample N candidate states {X
(l)
t

}N
l=1 with the confidence map.

3. Compute motion parameters p(X
(l)
t

|Xt−1) by Eq. 9 and their

likelihoods p(Yt|X
(l)
t

) by Eq. 10-12.

4. Estimate MAP state X̂t using Eq. 3.

5. Detect full occlusion with Eq. 13.

6. Add one frame into the update sequence every U frames

7. Update the appearance model every W frames.

end

much less than the average of confidence of the retained se-

quence, that means that the MAP target estimate is still of

high probability to be background area, then Eq. 13 is sat-

isfied and a heavy occlusion is deemed to occur. In such

situations, the target estimate Xt−1 of the last frame is con-

sidered the target estimate X̂t for the current frame. Fur-

thermore, instead of deleting the oldest (first) frame when

we add one new frame to the end of the retained sequence,

we delete the k-th (e.g., k = 8, k < H) frame of the se-

quence. In this manner, our tracker will not delete all in-

formation of target when long time heavy occlusion occurs,

and keep on learning the occlusion at the same time. With-

out learning the appearance of heavy occlusion, our tracker

may be affected when occlusion changes. All superpixels

in the current frame are regarded as lying in the background

area and µC is saved as the confidence of current frame.

As will be shown in the experiments, robust results can be

obtained with this scheme.



The confidence map with update is also used to recover

our tracker from drifts. Figure 4 illustrates how the pro-

posed method recovers from drifts with the information

from superpixels and confidence map. The main steps of

the proposed algorithm are summarized in Table 1.

3. Experimental Results

We present the experimental setups and empirical results

as well as observations in this section.

3.1. Experimental Setups

We utilize normalized histogram in the HSI color space

as the feature for each superpixel. The SLIC algorithm [17]

is applied to segment frames into superpixels where the spa-

tial proximity weight and number of superpixels are set to

10 and 300, respectively. The bandwidth of the mean shift

clustering [6] is set to the range of 0.15 and 0.20. We note

that the bandwidth needs to be wide enough to separate su-

perpixels from the target and background into different clus-

ters. To collect a training dataset in the initialization step,

the target regions in the first 4 frames are either located by

an object detector or manually cropped. The σc and σs in

Eq. 9 are set between 3 and 8 in anticipation of the fastest

motion speed or changing scale of the target objects. The

threshold to detect occlusion θo is between the range of 0.1
and 0.3.

We evaluate our algorithm on 10 challenging se-

quences (6 from prior work [1, 10, 20, 11] and 4 from

our own). These sequences include most challenging

factors in visual tracking: complex background, mov-

ing camera, fast movement, large variation in pose and

scale, half or full occlusion, shape deformation and

distortion (See Figure 1, Figure 5 and Figure 6). The

quantitative evaluations of the Mean Shift (MS) [5],

adaptive color-based particle filter (PF) [16], IVT [13],

FragTrack [1], MILTrack [3], PROST [20], VTD [11]

methods and our tracker are presented in Table 2, Ta-

ble 3 and Figure 7. More results and videos can be

found in the supplementary material and at our web site

(http://faculty.ucmerced.edu/mhyang/pubs/iccv11a.html).

In addition, our work can easily be extended to segment

salient foreground target from background, and results are

presented in supplemental material. All the MATLAB code

and datasets are available on our web site.

3.2. Empirical Results

We first evaluate our algorithm with the sequences used

in prior works: singer1 and basketball from VTD [11],

transformer from PDAT [10], lemming and liquor from

PROST [20], and woman from FragTrack [1]. We then test

4 sequences from our own dataset: bolt, bird1, bird2, and

girl. For fair comparison, we carefully adjust the parame-

ters of every tracker with the code provided by the authors

Sequence MS PF IVT Frag MIL PROST VTD SPT

lemming 236 184 14 84 14 23 98 7

liquor 137 28 296 31 165 22 155 9

singer1 116 25 5 21 20 – 3 4

basketball 203 21 120 14 104 – 11 6

woman 32 79 133 112 120 – 109 9

transformer 46 49 131 47 33 – 43 13

bolt 204 34 386 100 380 – 14 6

bird1 330 137 230 228 270 – 251 15

bird2 73 75 115 24 13 – 46 11

girl 304 16 184 106 55 – 57 21

Table 2. Tracking results. The numbers denote average errors of

center location in pixels.

girl #745 bolt #260 liquor #1236

basketball #169 singer1 #77 woman #273

Figure 5. Tracking results with comparisons to color-based track-

ers. The results by the MS tracker, PF method and our algorithm

are represented by red ellipse, green ellipse and yellow rectangles.

It is evident that our tracker is able to handle cluttered background

(girl and basketball sequences), drastic movement (bolt sequence),

heavy occlusion (liquor and woman sequences) and lighting con-

dition change (singer1 sequence).

and use the best result from 5 runs, or taken directly from

the presented results in the prior works.

Comparison with color-based trackers:

As shown in Figure 5, the adaptive color-based particle

filter [16] can neither deal with cluttered background, dras-

tic movement nor heavy occlusion. The mean shift tracker

with adaptive scale [5] does not perform well when there is

a large appearance change due to non-rigid motion, lighting

change and heavy occlusion (Figure 5). We note that this

tracker is designed to handle scale change. However, it is

less effective in dealing with lighting and occlusion.

On the other hand, the discriminative appearance model

based on mid-level representation alleviates negative influ-

ences from noise and background clutter. Consequently, our

tracker is able to track objects undergoing heavy occlusion,

non-rigid deformation and lighting change in clutter back-

grounds (Figure 5).

Comparison with other state-of-the-art trackers:

Visual drifts: While trackers based on holistic appearance

models are able to track objects in many scenarios, they

are less effective in handling drifts. The main reason is



basketball #35 basketball #485 basketball #725 bolt #20 bolt #184 bolt #350

girl #117 girl #1395 girl #1500 liquor #778 liquor #1187 liquor #1722

bird1 #33 bird1 #100 bird1 #185 bird1 #268 bird1 #314 bird1 #371

Figure 6. Tracking results. The results by our tracker, IVT, VTD, PROST, MILTrack and FragTrack methods are represented by yellow,

red, white, green, blue and cyan rectangles.

Sequence MS PF IVT Frag MIL PROST VTD SPT

lemming 171 426 1046 678 1105 969 471 1290

liquor 413 1202 380 1375 353 1444 471 1701

singer1 64 96 332 87 87 – 350 297

basketball 78 455 80 512 204 – 601 707

woman 35 31 49 44 38 – 27 310

transformer 28 32 29 38 30 – 47 124

bolt 15 172 4 32 12 – 195 224

bird1 1 6 4 47 114 – 7 139

bird2 36 19 9 42 86 – 9 94

girl 79 1106 107 628 560 – 828 1180

Table 3. Tracking results. The numbers denote the count of suc-

cessful frame based on evaluation metric of the PASCAL VOC

object detection [7] which is also used in other tracking algo-

rithm [20]. Note that we use elliptical target area for the mean

shift tracker (MS) and the adaptive color-based particle filter (PF)

to calculate the metric used in PASCAL VOC tests for fair com-

parison.

that these trackers typically focus on learning target appear-

ance rather than the background (i.e., with a generative ap-

proach). As shown in the first row (bird2 sequence) of Fig-

ure 1, the IVT and VTD methods drift away from the target

into background regions when heavy occlusions occur in

frame 11 and 19.

In the basketball and bolt sequences (shown in Figure 6),

the IVT, MILTrack and FragTrack methods drift to back-

ground area in early frames for that they are not designed for

non-rigid deformation. Although the VTD tracker achieves

the second best results in these two sequences, its tracking

results are not as accurate as ours. The reason is that it

does not distinguish the target from the background, and

considers some background pixels as parts of the target,

thereby rendering imprecise tracking results. In contrast,

the discriminative appearance model of our tracker utilizes

background information effectively and avoids such drifting

problems throughout these two sequences.

Large variation of pose and scale: The second row (lem-

ming sequence) in Figure 1 shows that, the IVT, MIL-

Track and PROST methods perform well as the methods

with holistic appearance models are effective for tracking

rigid targets (one tracker in PROST is an off-line template).

They are able to track the target well when there is no large

change in scale and pose (e.g., out-of-plane rotation). How-

ever, it is not surprising that their holistic appearance mod-

els (where target objects are enclosed with rectangles for

representation) are not effective in accounting for appear-

ance change due to large pose change. On the other hand,

our tracker is more robust to pose variation due to the use of

mid-level appearance model, and outperforms other track-

ers as the proposed superpixel-based discriminative appear-

ance model learns the difference between the target and

background with updates, which makes our tracker able to

handle scaling and occlusion throughout this sequence.

Large shape deformation: The third row (transformer

sequence) of Figure 1 shows one example when drastic

shape deformation occurs, tracking algorithms using holis-

tic appearance models or blobs are unlikely to perform well

(IVT, MIL and VTD). The patch-based dynamic appear-

ance tracker (PDAT) [10] is able to track the target object in

this sequence as its representation scheme is based on local

patches and not sensitive to non-rigid shape deformation.

Nevertheless, without sufficient usage of the appearance in-

formation of both target and background, the tracking re-

sults are less accurate. Our appearance model utilizes in-

formation of both target and background on local mid-level

cues, and distinguishes target parts from background blocks

precisely. Thus our tracker gives the most accurate results.

Heavy occlusion: The target in the liquor sequence under-

goes heavy occlusion for many times (the second row of

Figure 6). Since our superpixel-based discriminative ap-
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Figure 7. Tracking results comparison of IVT, Visual Tracking Decomposition (VTD), MILTrack, FragTrack, PROST and our tracker.

pearance model is able to alleviate influence from back-

ground pixels and learns the appearance of both target and

background with superpixels, our tracker is able to detect

and handle all heavy occlusions accordingly. Although the

PROST method may recover from drifts after occlusion, it

does not succeed all the time. Furthermore, the other track-

ers fail for that they are not able to handle large appearance

change due to heavy occlusion or recover from drifts.

In the bird1 sequence (third row in Figure 6), the target

object undergoes significant non-rigid deformation, rapid

motion, pose change, and occlusion for a long duration.

Unless a tacker is able to distinguish foreground from back-

ground based on low-level or mid-level cues, it is unlikely

to handle heavy occlusion and non-rigid deformation simul-

taneously. Our discriminative appearance model with su-

perpixels enables our tracker to detect full occlusion and

account for shape deformation at the same time. The other

trackers fail mainly due to large appearance change caused

by heavy occlusion and shape deformation.

In addition to the above-mentioned results, our tracker

outperforms other state-of-the-art methods in dealing with

heavy occlusion in the woman and girl sequences (shown in

Figure 1 and Figure 6).

4. Conclusion

In this paper, we propose a robust tracker based on a dis-

criminative appearance model and superpixels. We show

that the use of superpixels provide flexible and effective

mid-level cues, which are incorporated in an appearance

model to distinguish the foreground target and the back-

ground. The proposed appearance model is used for ob-

ject tracking to account for large appearance change due to

shape deformation, occlusion and drifts. Numerous exper-

imental results and evaluations demonstrate the proposed

tracker performs favorably against existing state-of-the-art

algorithms in the literature.
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